Experiences with ROMIO from a PnetCDF developer's point of view

Wei-Keng Liao, ECE Department, Northwestern University

MPICH: A High-Performance Open Source MPI Library for Leadership-class HPC Systems 2024 CASS Community BOF Days, June 12, 2024

Northwestern ENGINEERING

PnetCDF

- A parallel I/O library for accessing NetCDF classic file format
 - Relies on MPI-IO
- NetCDF classic file format
 - NetCDF files are popularly used in climate research community
 - Header and data sections
 - Data objects: dimensions, variables, attributes
- PnetCDF APIs
 - Metadata
 - Read and write subarrays of variables
 - Blocking and non-blocking reads and writes

MPI APIs used in PnetCDF

• MPI-IO

- File open, close, seek, sync, set view
- Collective and independent I/O APIs
- MPI communication
 - Metadata consistency check: file header
 - Mostly MPI_Allreduce, MPI_Bcast
- MPI derived datatypes to define fileview
 - Commonly used data partitioning patterns
 - Call to set fileview is collective, a problem for switch between independent and collective modes

I/O request aggregation

- User intent for I/O
 - Saving multiple variables in the file during data checkpointing.
 - Safely store all variables, not individual variables, before returning to the computation phase.
 - Such intent can be better realized by high-level libraries (through requestion aggregation feature in PnetCDF, HDF5, and PIO)
- PnetCDF
 - Use nonblocking APIs to post requests + a wait_all call later to flushed all out
- HDF5 multi-dataset APIs
 - H5Dwrite_multi allows a single call to write multiple variables
- PIO
 - Two aggregation options: subset and box rearrangers
- Challenge for MPI-IO
 - Aggregated amount can become very large. So is the metadata describing the requests.

Challenges — I/O hints

- cb_nodes
 - Number of I/O aggregators (a subset of processes does I/O)
 - Default: one per compute node (GPFS), same as number of OSTs (Lustre)
- cb_buffer_size (default: 16 MiB)
- striping_factor
 - Too small yields poor performance, too large increases interference from other users
- striping_unit
 - Large, contiguous requests prefer large striping size
- Data sieving (romio_ds_write, romio_ds_read, romio_cb_ds_threshold)
 - I/O aggregators check holes in its file domain to determine whether data sieving is necessary, and then read-modify-write

Challenges — future ROMIO improvement

- Memory footprints
 - Fileview and user buffer datatype are flattened into offset-length pairs
 - Internal buffers allocated for storing these pairs can become significant
- Excessive number of memcpy calls
 - Communication phase in collective I/O packs data into contiguous buffers before sending
 - For large number of offset-length pairs, memcpy calls become expensive
- Communication in the two-phase I/O
 - MPI_Isend vs. MPI_Issend MPI_Issend can prevent message queues from being overwhelmed