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MPICH: Status and Upcoming Releases
http://www.mpich.org

Ken Raffenetti, Yanfei Guo, Hui Zhou, Rajeev Thakur
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MPICH turns 31
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The MPICH Project

• Funded by DOE for 31 years

• Has been a key influencer in the adoption of MPI

• First/most comprehensive implementation of every 

MPI standard

• Allows supercomputing centers to not compromise on 

what features they demand from vendors

• DOE R&D100 award in 2005 for MPICH

• DOE R&D100 award in 2019 for UCX (MPICH internal comm.

layer)

• MPICH and its derivatives are the world’s most widely used 

MPI implementations

MPICH is not just a software
It’s an Ecosystem



MPICH Adoption in Exascale Machines

§ Aurora, ANL, USA (Intel MPI for Aurora)

§ Frontier, ORNL, USA (Cray MPICH)

§ El Capitan, LLNL, USA (Cray MPICH)



§ Binary compatibility for MPI implementations
– Started in 2013
– Explicit goal of maintaining ABI compatibility between multiple MPICH 

derivatives
– Collaborators:

• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPICH (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

§ Open initiative: other MPI implementations are welcome to join
§ http://www.mpich.org/abi
§ MPI Standard ABI update in later slides…

MPICH ABI Compatibility Initiative

http://www.mpich.org/abi


MPICH Distribution Model

§ Source Code Distribution
– MPICH Website, Github

§ Binary Distribution through OS Distros 
and Package Managers
– Redhat, CentOS, Debian, Ubuntu, 

Homebrew (Mac)

§ Distribution through HPC Package 
Managers
– Spack, OpenHPC, E4S

§ Distribution through Vendor Derivatives



MPICH Support in Spack

§ Spack package manager is widely used in HPC

§ Many MPICH configurations and features supported

§ Recently added options
– XPMEM variant

– Improved PMI/PMI2/PMIx variants

§ We want to hear from you
– Are there features missing?

– Are you unable to build/install on your system?

– Open an issue on Spack Github (https://github.com/spack/spack), use 
subject “mpich: <…>” and tag @raffenet, @yfguo, @hzhou



MPICH Releases

§ MPICH now aims to follow a 12-month cycle for major releases (4.x)
– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

– Branching off when beta is released (feature freezed)

§ Current stable release is in the 4.2.x series
– mpich-4.2.1 released in March, mpich-4.2.2 release by end of June

§ Upcoming major release is in the 4.3.x series
– mpich-4.3.0b1 release targeted for November @ SC24



MPICH Layered Structure
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MPICH 4.2

§ Full support for MPI 4.1 specification

– mpi_memory_alloc_kinds info hint
– MPI_Request_get_status_{all,any,some}

– MPI_Remove_error_{class,code,string}

– MPI_{Comm,Session}_{attach,detach}_buffer

– MPI_BUFFER_AUTOMATIC

– Split type MPI_COMM_TYPE_RESOURCE_GUIDED

§ New experimental features
– MPI Thread communicator

– MPI datatype iov query

– Reduction operator MPIX_EQUAL

§ Enhanced GPU (esp. ZE) support

§ Unified PMI-{1,2,x} support 

11



MPICH 4.3 Update

§ Support the new MPI ABI proposal  --enable-mpi-abi 

§ MPIX Async extension – for interoperable MPI progress
– Custom progress engine can include MPI progress

– MPI progress can advance custom asynchronous tasks

§ Stability and performance issues from Aurora

§ Misc fixes and enhancements – 122 merged pull requests so far
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Support for MPI ABI

§ Standardized ABI by MPI Forum
– Portability across different MPI implementations.

– Simplify package and dependency management of HPC software

§ Try today by building MPICH with --enable-mpi-abi 
– Existing MPICH ABI is offered in parallel

§ New compiler wrappers
– mpicc-abi, mpic++-abi
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Jeff R. Hammond, Lisandro Dalcin, Erik Schnetter, Marc Pérache, Jean-Baptiste Besnard, Jed Brown, Gonzalo Brito Gadeschi, Joseph Schuchart, Simon Byrne, and Hui Zhou. MPI
Application Binary Interface Standardization. In Proceedings of EuroMPI 2023: the 30th European MPI Users’ Group Meeting (EUROMPI ’23), September 11–13, 2023, Bristol, United 
Kingdom. ACM, New York, NY, USA. https://doi.org/10.1145/3615318.3615319



New Extension – MPIX_Op_create_x
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§ The “old” op user function caters to a Fortran calling convention.

§ It assumes integer handles, which won’t work with Fortran.
§ It won’t work with any non-C/C++ user functions.
§ Current MPICH Fortran binding relies on non-standard, language-specific ABIs.

§ Proposed fix – add a context and a destructor to support binding proxy functions.

typedef void (MPI_User_function)(void *invec, void *inoutvec,
                                 int *len, MPI_Datatype *datatype); 

void MPII_Op_set_fc(MPI_Op);
void MPII_Op_set_cxx(MPI_Op);

int MPIX_Op_create_x(MPIX_User_function_x *user_fn_x,
                     MPIX_Destructor_function *destructor_fn,
        int commute, void *extra_state, MPI_Op *op);
Typedef void (MPIX_User_function_x)(void *invec, void *inoutvec,
                                   MPI_Count len, MPI_Datatype datatype,
                                   void *extra_state);
Typedef void (MPIX_Destructor_function)(void *extra_state); 



New Extensions to Enable Inter-operable MPI Progress
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int MPIX_Async_start(MPIX_Async_poll_function poll_fn,
        void *extra_state, MPIX_Stream stream);

enum {
    MPIX_ASYNC_PENDING = 0,
    MPIX_ASYNC_DONE = 1,
};

typedef struct MPIR_Async_thing *MPIX_Async_thing;
typedef int (MPIX_Async_poll_function)(MPIX_Async_thing);

void *MPIX_Async_get_state(MPIX_Async_thing async_thing);

void *MPIX_Async_spawn(MPIX_Async_thing async_thing,
   MPIX_Async_poll_function poll_fn,
   void *extra_state, MPIX_Stream stream);

§ Explicit MPI 
progress

§ MPIX Async

§ Lightweight 
request 
completion 
query

int MPIX_Stream_progress(MPIX_Stream stream);

bool MPIX_Request_is_complete(MPI_Request request);

Hui Zhou, Robert Latham, Ken Raffenetti, Yanfei Guo and Rajeev Thakur. MPI Progress For All. https://arxiv.org/pdf/2405.13807



The problem of “fancy” communications

§ Three Async Patterns
– No Await - e.g. light weight send

– Single Await – e.g. “strong progress”

– Multiple Await – e.g. fancy schemes require handshakes

§ Good computation/communication overlaps are 
only possible with single await patterns.

§ It is more common to require fancy schemes for 
communication performance due to increasingly 
hybrid systems.
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Why we need explicit MPI progress

§ To achieve computation/communication 
overlap, we require a progression scheme, 
e.g. a progress thread.

§ Default global async thread does not work
– Waste resource when it is not needed

– Severely degrade performance due to thread 
contentions

§ Solution – explicit MPI progress

– On-demand invocation

– Per-stream progress
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int MPIX_Stream_progress(MPIX_Stream stream);



Integrate custom progress hooks into MPI progress

§ Enable users to extend MPI by building custom communication algorithms

§ Integrate custom progress hooks –
– Allows for seamless MPI framework, minimize the effort of porting applications

– Avoid the complexity of building separate progression mechanisms

– Achieve equivalent performance to a native MPI implementation
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int MPIX_Async_start(MPIX_Async_poll_function poll_fn,
        void *extra_state, MPIX_Stream stream);



Lightweight request completion query

§ Asynchronous workflow need to check dependency status

§ MPI_Test invokes MPI_Progress
– It contends with progress engine

– It does more than what is needed – filling status and freeing requests

§ MPIX_Request_is_complete is
– Lightweight (essentially an atomic query).

– No side effects.
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bool MPIX_Request_is_complete(MPI_Request request);



Example: Allreduce Implementation outside of a MPI Library

§ Recursive doubling algorithm implemented in outside vs inside an MPI library.

§ “MyAllreduce” assumes MPI_IN_PLACE,
MPI_INT, MPI_SUM, and a power-of-2
communicator size.

§ It out-performs the native implementation
due to these assumptions (shortcuts).
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Example: custom Allreduce

Complete & Cleanup



MPICH 4.3.0 Roadmap

•MPICH-4.3.0b1 in November 2024
– 4.3.x branch is created

• GA release in late 2024/early 2025

• Critical bug fixes are backported to 4.2.x

V4.2.0
V4.2.1

Jan ‘24 Mar ‘24

V4.3.0b1

Nov ‘24

V4.3.0
V4.2.2

Jun ‘24



Thank you!

• https://www.mpich.org

• Mailing list: discuss@mpich.org

• Issues and Pull requests: https://github.com/pmodels/mpich

• Weekly development call every Thursday at 9am (central): https://bit.ly/mpich-dev-call

https://www.mpich.org/
mailto:discuss@mpich.org
https://github.com/pmodels/mpich
https://bit.ly/mpich-dev-call

