
MPICH: A High-Performance Open Source MPI Library for
Leadership-class HPC Systems

Agenda
• Argonne Update – Yanfei Guo
• User presentations

• Jeff Hammond (NVIDIA)
• Vitali Morozov (Argonne)
• Wei-keng Liao (Northwestern University)
• Jiajun Huang (ANL/University of California, Riverside)
• Junchao Zhang (ANL)

• Wrap Up/Q&A

1

CASS Community BoF Days
June 12, 2024

MPICH: Status and Upcoming Releases
http://www.mpich.org

Ken Raffenetti, Yanfei Guo, Hui Zhou, Rajeev Thakur

Argonne National Laboratory

MPICH turns 31

Tianhe
MPI

MPICH

Intel
MPI

Sunway
MPI

Cray
MPICH

Microsoft
MPI

MVAPICH

MPE PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

ParaStation
MPI

FG-
MPI

RIKEN
MPI

The MPICH Project

• Funded by DOE for 31 years

• Has been a key influencer in the adoption of MPI

• First/most comprehensive implementation of every

MPI standard

• Allows supercomputing centers to not compromise on

what features they demand from vendors

• DOE R&D100 award in 2005 for MPICH

• DOE R&D100 award in 2019 for UCX (MPICH internal comm.

layer)

• MPICH and its derivatives are the world’s most widely used

MPI implementations

MPICH is not just a software
It’s an Ecosystem

MPICH Adoption in Exascale Machines

§ Aurora, ANL, USA (Intel MPI for Aurora)

§ Frontier, ORNL, USA (Cray MPICH)

§ El Capitan, LLNL, USA (Cray MPICH)

§ Binary compatibility for MPI implementations
– Started in 2013
– Explicit goal of maintaining ABI compatibility between multiple MPICH

derivatives
– Collaborators:

• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPICH (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

§ Open initiative: other MPI implementations are welcome to join
§ http://www.mpich.org/abi
§ MPI Standard ABI update in later slides…

MPICH ABI Compatibility Initiative

http://www.mpich.org/abi

MPICH Distribution Model

§ Source Code Distribution
– MPICH Website, Github

§ Binary Distribution through OS Distros
and Package Managers
– Redhat, CentOS, Debian, Ubuntu,

Homebrew (Mac)

§ Distribution through HPC Package
Managers
– Spack, OpenHPC, E4S

§ Distribution through Vendor Derivatives

MPICH Support in Spack

§ Spack package manager is widely used in HPC

§ Many MPICH configurations and features supported

§ Recently added options
– XPMEM variant

– Improved PMI/PMI2/PMIx variants

§ We want to hear from you
– Are there features missing?

– Are you unable to build/install on your system?

– Open an issue on Spack Github (https://github.com/spack/spack), use
subject “mpich: <…>” and tag @raffenet, @yfguo, @hzhou

MPICH Releases

§ MPICH now aims to follow a 12-month cycle for major releases (4.x)
– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

– Branching off when beta is released (feature freezed)

§ Current stable release is in the 4.2.x series
– mpich-4.2.1 released in March, mpich-4.2.2 release by end of June

§ Upcoming major release is in the 4.3.x series
– mpich-4.3.0b1 release targeted for November @ SC24

MPICH Layered Structure

10

OneAPI

HW
LO

C
JSO

N
-C

Abstract Device Interface (ADI)

MPI Interface
Application

GPU IPC

Yaksa
Datatype

Engine

MPL
(Portable

Funtionalities)

Machine-independent
Collectives

Derived Datatype Management Group Management

C/Fortran Bindings

CH4

Netmods

libfabric UCX

Architecture-specific
Collectives

Active Message
Fallback

GPU Support
Fallback

VCI Stream
Support

Shmmod

POSIX XPMEM GPU IPC

HIPCUDA

MPICH 4.2

§ Full support for MPI 4.1 specification

– mpi_memory_alloc_kinds info hint
– MPI_Request_get_status_{all,any,some}

– MPI_Remove_error_{class,code,string}

– MPI_{Comm,Session}_{attach,detach}_buffer

– MPI_BUFFER_AUTOMATIC

– Split type MPI_COMM_TYPE_RESOURCE_GUIDED

§ New experimental features
– MPI Thread communicator

– MPI datatype iov query

– Reduction operator MPIX_EQUAL

§ Enhanced GPU (esp. ZE) support

§ Unified PMI-{1,2,x} support

11

MPICH 4.3 Update

§ Support the new MPI ABI proposal --enable-mpi-abi

§ MPIX Async extension – for interoperable MPI progress
– Custom progress engine can include MPI progress

– MPI progress can advance custom asynchronous tasks

§ Stability and performance issues from Aurora

§ Misc fixes and enhancements – 122 merged pull requests so far

12

Support for MPI ABI

§ Standardized ABI by MPI Forum
– Portability across different MPI implementations.

– Simplify package and dependency management of HPC software

§ Try today by building MPICH with --enable-mpi-abi
– Existing MPICH ABI is offered in parallel

§ New compiler wrappers
– mpicc-abi, mpic++-abi

13

Jeff R. Hammond, Lisandro Dalcin, Erik Schnetter, Marc Pérache, Jean-Baptiste Besnard, Jed Brown, Gonzalo Brito Gadeschi, Joseph Schuchart, Simon Byrne, and Hui Zhou. MPI
Application Binary Interface Standardization. In Proceedings of EuroMPI 2023: the 30th European MPI Users’ Group Meeting (EUROMPI ’23), September 11–13, 2023, Bristol, United
Kingdom. ACM, New York, NY, USA. https://doi.org/10.1145/3615318.3615319

New Extension – MPIX_Op_create_x

14

§ The “old” op user function caters to a Fortran calling convention.

§ It assumes integer handles, which won’t work with Fortran.
§ It won’t work with any non-C/C++ user functions.
§ Current MPICH Fortran binding relies on non-standard, language-specific ABIs.

§ Proposed fix – add a context and a destructor to support binding proxy functions.

typedef void (MPI_User_function)(void *invec, void *inoutvec,
 int *len, MPI_Datatype *datatype);

void MPII_Op_set_fc(MPI_Op);
void MPII_Op_set_cxx(MPI_Op);

int MPIX_Op_create_x(MPIX_User_function_x *user_fn_x,
 MPIX_Destructor_function *destructor_fn,
 int commute, void *extra_state, MPI_Op *op);
Typedef void (MPIX_User_function_x)(void *invec, void *inoutvec,
 MPI_Count len, MPI_Datatype datatype,
 void *extra_state);
Typedef void (MPIX_Destructor_function)(void *extra_state);

New Extensions to Enable Inter-operable MPI Progress

15

int MPIX_Async_start(MPIX_Async_poll_function poll_fn,
 void *extra_state, MPIX_Stream stream);

enum {
 MPIX_ASYNC_PENDING = 0,
 MPIX_ASYNC_DONE = 1,
};

typedef struct MPIR_Async_thing *MPIX_Async_thing;
typedef int (MPIX_Async_poll_function)(MPIX_Async_thing);

void *MPIX_Async_get_state(MPIX_Async_thing async_thing);

void *MPIX_Async_spawn(MPIX_Async_thing async_thing,
 MPIX_Async_poll_function poll_fn,
 void *extra_state, MPIX_Stream stream);

§ Explicit MPI
progress

§ MPIX Async

§ Lightweight
request
completion
query

int MPIX_Stream_progress(MPIX_Stream stream);

bool MPIX_Request_is_complete(MPI_Request request);

Hui Zhou, Robert Latham, Ken Raffenetti, Yanfei Guo and Rajeev Thakur. MPI Progress For All. https://arxiv.org/pdf/2405.13807

The problem of “fancy” communications

§ Three Async Patterns
– No Await - e.g. light weight send

– Single Await – e.g. “strong progress”

– Multiple Await – e.g. fancy schemes require handshakes

§ Good computation/communication overlaps are
only possible with single await patterns.

§ It is more common to require fancy schemes for
communication performance due to increasingly
hybrid systems.

16

No Await

Single Await
Multiple Await

Computation Communication

Why we need explicit MPI progress

§ To achieve computation/communication
overlap, we require a progression scheme,
e.g. a progress thread.

§ Default global async thread does not work
– Waste resource when it is not needed

– Severely degrade performance due to thread
contentions

§ Solution – explicit MPI progress

– On-demand invocation

– Per-stream progress

17

Computation
thread

Progress
thread

Communication

Explicit MPI Progress
int MPIX_Stream_progress(MPIX_Stream stream);

Integrate custom progress hooks into MPI progress

§ Enable users to extend MPI by building custom communication algorithms

§ Integrate custom progress hooks –
– Allows for seamless MPI framework, minimize the effort of porting applications

– Avoid the complexity of building separate progression mechanisms

– Achieve equivalent performance to a native MPI implementation

18

int MPIX_Async_start(MPIX_Async_poll_function poll_fn,
 void *extra_state, MPIX_Stream stream);

Lightweight request completion query

§ Asynchronous workflow need to check dependency status

§ MPI_Test invokes MPI_Progress
– It contends with progress engine

– It does more than what is needed – filling status and freeing requests

§ MPIX_Request_is_complete is
– Lightweight (essentially an atomic query).

– No side effects.

19

bool MPIX_Request_is_complete(MPI_Request request);

Example: Allreduce Implementation outside of a MPI Library

§ Recursive doubling algorithm implemented in outside vs inside an MPI library.

§ “MyAllreduce” assumes MPI_IN_PLACE,
MPI_INT, MPI_SUM, and a power-of-2
communicator size.

§ It out-performs the native implementation
due to these assumptions (shortcuts).

20

21

Example: custom Allreduce

Complete & Cleanup

MPICH 4.3.0 Roadmap

•MPICH-4.3.0b1 in November 2024
– 4.3.x branch is created

• GA release in late 2024/early 2025

• Critical bug fixes are backported to 4.2.x

V4.2.0
V4.2.1

Jan ‘24 Mar ‘24

V4.3.0b1

Nov ‘24

V4.3.0
V4.2.2

Jun ‘24

Thank you!

• https://www.mpich.org

• Mailing list: discuss@mpich.org

• Issues and Pull requests: https://github.com/pmodels/mpich

• Weekly development call every Thursday at 9am (central): https://bit.ly/mpich-dev-call

https://www.mpich.org/
mailto:discuss@mpich.org
https://github.com/pmodels/mpich
https://bit.ly/mpich-dev-call

